Simple 2-bit Calculator with a decoder for a 7 segment display.
Experiment No. 7: Implementation of 2x4 decoder using basic gates.
Done by:
Saranga K. Mahanta
Scholar Id: 18-14-038
Use two 2-to-4 DECODERS (with Enable bits) one INVERTER gate and
two AND gates to implement a 3-to-8 DECODER (with Enable bit).
Use a 3-to-8 DECODER (and an OR gate) to implement the following
function: 𝐹 = ∑𝑚(1,2,3,5,7).
For a decoder, If the input is a N bit binary number, then the output will be one the lines of the 2^N output lines.
So, for a 2-bit binary input, there will be 2^2 output lines and only one of the output lines will be active according to the binary combination of the inputs. This type of decoder is known as 2 to 4 decoder.
A
B
Q0
Q1
Q2
Q4
0
0
1
0
0
0
0
1
0
1
0
0
1
0
0
0
1
1
1
0
0
0
1
Consider a 8:1 multiplexer that takes 8 two-bit inputs (T8 to T1), three-bit control signal (S) and has an output (Out). This Type of multiplexer is known as a 8 to 1 multiplexer. The truth table is given below:
S2
S1
S0
OUT
0
0
0
T1
0
0
1
T2
0
1
0
T3
0
1
1
T4
1
0
0
T5
1
0
1
T6
1
1
0
T7
1
1
1
T8
A decoder is a combinational circuit. It has n input and to a maximum m = 2n outputs. Decoder is identical to a demultiplexer without any data input. It performs operations which are exactly opposite to those of an encoder.
*formed using simulator.
Encoder, Decoder, Convertor, Full Adder using Decoder
A 7 Segment Decoder with ROM to check the decoder check the text file here
Seven Segment Display Truth Table.txt
Seven Segment Truth Table - if you want o add a decimal point, add an 8 to the Tens Digit - If you are using a Common Anode Display not Cathode, use the Binary Inverter or the Hex Inverter Datasheet to invert the Hex or Binary values
Actually, the "7 Segment Out" group is an binary output while the Hex out is the Hexadecimal because Hex is short for Hexadecimal
Anyway, Hexadecimal Values go from 0 - F while Decimal is 0-9 (since hex is diffeent then dec the letters A-F are actually 10-15
4-bit In 7 Segment Out
D C B A DP A B C D E F G Hex out Display
0 0 0 0 0 1 1 1 1 1 1 0 0x7E (7E) 0
0 0 0 1 0 0 1 1 0 0 0 0 0x30 (30) 1
0 0 1 0 0 1 1 0 1 1 0 1 0x6D (6D) 2
0 0 1 1 0 1 1 1 1 0 0 1 0x79 (79) 3
0 1 0 0 0 0 1 1 0 0 1 1 0x33 (33) 4
0 1 0 1 0 1 0 1 1 0 1 1 0x5B (5B) 5
0 1 1 0 0 1 0 1 1 1 1 1 0x5F (5F) 6
0 1 1 1 0 1 1 1 0 0 1 0 0x72 (72) 7
1 0 0 0 0 1 1 1 1 1 1 1 0x7F (7F) 8
1 0 0 1 0 1 1 1 1 0 1 1 0x7B (7B) 9
1 0 1 0 0 1 1 1 0 1 1 1 0x77 (77) A
1 0 1 1 0 0 0 1 1 1 1 1 0x1F (1F) B
1 1 0 0 0 1 0 0 1 1 1 0 0x4E (4E) C
1 1 0 1 0 0 1 1 1 1 0 1 0x3D (3D) D
1 1 1 0 0 1 0 0 1 1 1 1 0x4F (4F) E
1 1 1 1 0 1 0 0 0 1 1 1 0x47 (47) F
Invert the hex or binary value for a Common Anode Display - to invert a Binary Value, use a NPN or PNP Transistor (BJT) - to invert a Hexadecimal value use the Hex Inverter 74HC04 and check this pinout

Binary Invert
In Out
0 > 1
1 > 0
Hex Inverter
In Out
0 > F
1 > E
2 > D
3 > C
4 > B
5 > A
6 > 9
7 > 8
8 > 7
9 > 6
A > 5
B > 4
C > 3
D > 2
E > 1
F > 0
How to invert a value:
If your inverting a 4-bit Hex use 15-n1=n2
n1 is the number to input
n2 is the output
5-bit Hex - use 31 ↑
4-bit Hex - use 15 |
3-bit Hex - use 7 |
2-bit Hex - use 3 |
1-bit Hex - use 1 |
Tip: Double the numbers as the bits goes up and divide the numbers with the arrow besides them by 2 as the bits go down
Hex to decimal or Vice Versa
0-0
1-1
2-2
3-3
4-4
5-5
6-6
7-7
8-8
9-9
A-10
B-11
C-12
D-13
E-14
F-15
Binary to Hex
0000 - 0
0001 - 1
0010 - 2
0011 - 3
0100 - 4
0101 - 5
0110 - 6
0111 - 7
The value depend on the bits(cuz bits=binary digits )
And so goes on
5bit - 00000 ↑
4 bit - 0000 |
3bit - 000 |
2bit - 00 |
1bit - 0 |
Hello,
I have built a fully working converter that converts 16-bit binary code to BCD.
I wanted a mode with a small amount of gates instead of millions of cells connected in series to ROM. As a result, I designed the converter in a slightly different way, using only 5 ROM cells, one register, one shift register and, of course, since this is an algorithm where the operation is performed by cyclically changing one piece of data, we also need a control unit. This is only for clock control and a few minor details.
This conversion method is generally referred to as double-dabble, also known as shift-and-add-3. In fact, it is a large number of ROM cells, each cell handling a 4-bit or BCD code. It works by adding 3 to all numbers greater than or equal to 5, then shifting the entire range of bits to the left once. This cycle is repeated as many times as the length of the input bits, for example we have 8 bits and the cycle will be repeated eight times.
The main difference between my converter and the others is that mine is done by a clock that is constantly blinking, and drives the cyclical circulation of a piece of data continuously across exactly the same pair of cells. This method reduces the number of gates, but may be slightly slower and more complicated. While other circuits are mostly built with series connected ROM cells and this results in a simple circuit but a higher gate count compared to mine.
Below I have attached an image of
one ROM cell that converts binary code to BCD. There is also a table that
describes the behaviour of this cell perfectly.
For a better user experience, don't forget to read the instructions below.
INSTRUCTIONS:
1. Reset your device before conversion!
(RST = Reset button)
2. Enter the binary form of a number!
(Input binary code)
3. Press the button to start the conversion!
(BGN = Begin)
4. The clock must be on, it must blink 16 times!
(CLK = Clock)
5. Read the BCD value!
(Output BCD)
If you like my project, please give me a star (the button is on the bottom right), because it means a lot to me!
I hope you like the plan. I hope you enjoy the experience.
Class lab project
This is a "BCD To Seven Segment Decoder" made using Logic Gates.
A decoder is a digital circuit that detects the presence of a specified
combination of bits (code) on its inputs and indicates the presence
of that code by a specified output level.
In its general form, a decoder has n input lines to handle n bits and
from one to 2n output lines to indicate the presence of one or more
n-bit combinations.
Praktikum 4 Dasar Sistem A1 Informatika 2024
Tugas: Membuat Encoder 4x2, Subcircuit Encoder, Priority Encoder, Decoder 2x4, Latihan nomor 4a, 4b, dan 5