Searched Projects

Tags: exponential

project.name
2 Stars     363 Views

Computer Exponential Code Demo

Computer Exponential Code Demo

A Computer. Kind of.

The 256-Series, my new collection of simulated computers: https://circuitverse.org/users/4699/projects/256-series

This version is setup to demonstrate a program that puts input A to the power of input B This version has been specifically modified to make demonstrating the program easier. This was done by making operand A for the first two instructions depend on user input, which allows the user to easily test the program with different values. Note: X^0 does not work due to the fact the the output value (address 5) is never written to. 

The code is as follows:

00: LOAD Input A into Address 00

01: LOAD Input B into Address 01

02: LOAD1F into Address 02

03: XOR Addresses 00 and 02

04: LOAD XOR Result into Address 03

05: XOR Addresses 01 and 02

06: LOAD XOR Result into Address 04

07: LOAD 01 into 00

08: LOAD 00 into 08

09: LOAD 01 into 02

0A: LOAD 01 into 06

0B: ADD 04 and 06

0C: IF ADD Result = 00, GOTO 1B, ELSE GOTO 0D

0D: LOAD 00 into 05

0E: LOAD 01 into 07

0F: ADD Addresses 03 and 07

10: IF ADD Result = 00, GOTO 16, ELSE GOTO 11

11: ADD Addresses 00 and 05

12: LOAD ADD Result into 05

13: ADD 02 and 07

14: LOAD ADD Result into 07

15: GOTO 0F

16: ADD 02 and 06

17: LOAD ADD Result into 06

18: ADD 05 and 08

19: LOAD ADD Result into 00

1A: GOTO 0C

1B: RETURN Address 05

Features:

32-Bits of 5-bit RAM,

32 Lines for Instructions,

ADD, AND and XOR Functions.

Go To Functionality

Can do IF = Statements

OP Codes:

0000 = Nothing

0001 VVVVV AAAAA = LOAD VVVVV into address AAAAA

0010 AAAAA 00000 = LOAD Add result into address AAAAA

0011 DDDDD VVVVV = ADD DDDDD and VVVVV together

0100 AAAAA BBBBB = ADD address AAAAA and address BBBBB together

0101 DDDDD VVVVV = AND DDDDD and VVVVV together

0110 AAAAA BBBBB = AND address AAAAA and address BBBBB together

0111 DDDDD VVVVV = XOR DDDDD and VVVVV together

1000 AAAAA BBBBB = XOR address AAAAA and BBBBB together

1001 AAAAA 00000 = LOAD AND result into address AAAAA

1010 AAAAA 00000 = LOAD XOR result into address AAAAA

1011 AAAAA 00000 = GOTO address AAAAA (in instruction memory) 

1100 AAAAA BBBBB = If add result = 0 (ignoring carry), GOTO address AAAAA else go to address BBBBB (in instruction memory)

1101 VVVVV 00000 = Return VVVVV (Stops the program)

1110 AAAAA 00000 = Return the value at address AAAAA (Stops the program)

1111 = Nothing