You must login before you can post a comment.
Author: gabriel
Forked from: ZombieArmor9212/7 Segment ROM Counter
Project access type: Public
Description:
A 7 Segment Decoder with ROM to check the decoder check the text file here
Seven Segment Display Truth Table.txt
Seven Segment Truth Table - if you want o add a decimal point, add an 8 to the Tens Digit - If you are using a Common Anode Display not Cathode, use the Binary Inverter or the Hex Inverter Datasheet to invert the Hex or Binary values
Actually, the "7 Segment Out" group is an binary output while the Hex out is the Hexadecimal because Hex is short for Hexadecimal
Anyway, Hexadecimal Values go from 0 - F while Decimal is 0-9 (since hex is diffeent then dec the letters A-F are actually 10-15
4-bit In 7 Segment Out
D C B A DP A B C D E F G Hex out Display
0 0 0 0 0 1 1 1 1 1 1 0 0x7E (7E) 0
0 0 0 1 0 0 1 1 0 0 0 0 0x30 (30) 1
0 0 1 0 0 1 1 0 1 1 0 1 0x6D (6D) 2
0 0 1 1 0 1 1 1 1 0 0 1 0x79 (79) 3
0 1 0 0 0 0 1 1 0 0 1 1 0x33 (33) 4
0 1 0 1 0 1 0 1 1 0 1 1 0x5B (5B) 5
0 1 1 0 0 1 0 1 1 1 1 1 0x5F (5F) 6
0 1 1 1 0 1 1 1 0 0 1 0 0x72 (72) 7
1 0 0 0 0 1 1 1 1 1 1 1 0x7F (7F) 8
1 0 0 1 0 1 1 1 1 0 1 1 0x7B (7B) 9
1 0 1 0 0 1 1 1 0 1 1 1 0x77 (77) A
1 0 1 1 0 0 0 1 1 1 1 1 0x1F (1F) B
1 1 0 0 0 1 0 0 1 1 1 0 0x4E (4E) C
1 1 0 1 0 0 1 1 1 1 0 1 0x3D (3D) D
1 1 1 0 0 1 0 0 1 1 1 1 0x4F (4F) E
1 1 1 1 0 1 0 0 0 1 1 1 0x47 (47) F
Invert the hex or binary value for a Common Anode Display - to invert a Binary Value, use a NPN or PNP Transistor (BJT) - to invert a Hexadecimal value use the Hex Inverter 74HC04 and check this pinout

Binary Invert
In Out
0 > 1
1 > 0
Hex Inverter
In Out
0 > F
1 > E
2 > D
3 > C
4 > B
5 > A
6 > 9
7 > 8
8 > 7
9 > 6
A > 5
B > 4
C > 3
D > 2
E > 1
F > 0
How to invert a value:
If your inverting a 4-bit Hex use 15-n1=n2
n1 is the number to input
n2 is the output
5-bit Hex - use 31 ↑
4-bit Hex - use 15 |
3-bit Hex - use 7 |
2-bit Hex - use 3 |
1-bit Hex - use 1 |
Tip: Double the numbers as the bits goes up and divide the numbers with the arrow besides them by 2 as the bits go down
Hex to decimal or Vice Versa
0-0
1-1
2-2
3-3
4-4
5-5
6-6
7-7
8-8
9-9
A-10
B-11
C-12
D-13
E-14
F-15
Binary to Hex
0000 - 0
0001 - 1
0010 - 2
0011 - 3
0100 - 4
0101 - 5
0110 - 6
0111 - 7
The value depend on the bits(cuz bits=binary digits )
And so goes on
5bit - 00000 ↑
4 bit - 0000 |
3bit - 000 |
2bit - 00 |
1bit - 0 |
Created: Apr 23, 2024
Updated: Apr 23, 2024
Comments