7 Segment ROM Counter
0 Stars     13 Views    

Author: gabriel

Forked from: ZombieArmor9212/7 Segment ROM Counter

Project access type: Public

Description:

A 7 Segment Decoder with ROM to check the decoder check the text file here 


Seven Segment Display Truth Table.txt


Seven  Segment Truth Table - if you want o add a decimal point, add an 8 to the Tens Digit - If you are using a Common Anode Display not Cathode, use the Binary Inverter or the Hex Inverter Datasheet to invert the Hex or Binary values


Actually, the "7 Segment Out" group is an binary output while the Hex out is the Hexadecimal because Hex is short for Hexadecimal

Anyway, Hexadecimal Values go from 0 - F while Decimal is 0-9 (since hex is diffeent then dec the letters A-F are actually 10-15


4-bit In  7 Segment Out

D C B A   DP A B C D E F G  Hex out  Display

0 0 0 0   0 1 1 1 1 1 1 0  0x7E (7E)  0

0 0 0 1   0 0 1 1 0 0 0 0  0x30 (30)  1

0 0 1 0   0 1 1 0 1 1 0 1  0x6D (6D)  2

0 0 1 1   0 1 1 1 1 0 0 1  0x79 (79)  3

0 1 0 0   0 0 1 1 0 0 1 1  0x33 (33)  4

0 1 0 1   0 1 0 1 1 0 1 1  0x5B (5B)  5

0 1 1 0   0 1 0 1 1 1 1 1  0x5F (5F)  6

0 1 1 1   0 1 1 1 0 0 1 0  0x72 (72)  7

1 0 0 0   0 1 1 1 1 1 1 1  0x7F (7F)  8

1 0 0 1   0 1 1 1 1 0 1 1  0x7B (7B)  9

1 0 1 0   0 1 1 1 0 1 1 1  0x77 (77)  A

1 0 1 1   0 0 0 1 1 1 1 1  0x1F (1F)  B

1 1 0 0   0 1 0 0 1 1 1 0  0x4E (4E)  C

1 1 0 1   0 0 1 1 1 1 0 1  0x3D (3D)  D

1 1 1 0   0 1 0 0 1 1 1 1  0x4F (4F)  E

1 1 1 1   0 1 0 0 0 1 1 1  0x47 (47)  F


Invert the hex or binary value for a Common Anode Display - to invert a Binary Value, use a NPN or PNP Transistor (BJT) - to invert a Hexadecimal value use the Hex Inverter 74HC04 and check this pinout 

 


Binary Invert


In Out

0 > 1

1 > 0


Hex Inverter


In Out

0 > F

1 > E

2 > D

3 > C

4 > B

5 > A

6 > 9

7 > 8

8 > 7

9 > 6

A > 5

B > 4

C > 3

D > 2

E > 1

F > 0


How to invert a value:

If your inverting a 4-bit Hex use 15-n1=n2


n1 is the number to input

n2 is the output


5-bit Hex - use 31 ↑

4-bit Hex - use 15 |

3-bit Hex - use 7  |

2-bit Hex - use 3  |

1-bit Hex - use 1  |


Tip: Double the numbers as the bits goes up and divide the numbers with the arrow besides them by 2 as the bits go down


Hex to decimal or Vice Versa


0-0

1-1

2-2

3-3

4-4

5-5

6-6

7-7

8-8

9-9

A-10

B-11

C-12

D-13

E-14

F-15


Binary to Hex

0000 - 0 

0001 - 1

0010 - 2

0011 - 3

0100 - 4

0101 - 5

0110 - 6

0111 - 7


The value depend on the bits(cuz bits=binary digits )


And so goes on


5bit - 00000 ↑

4 bit - 0000 |

3bit  - 000  |

2bit  - 00   |

1bit  - 0    |





Created: Apr 23, 2024

Updated: Apr 23, 2024


Comments

You must login before you can post a comment.